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ACOUSTICAL BEHAVIOR OF THICK, COMPOSITE, FLUID-LOADED

PLATES, CALCULATED USING TIMOSHENKO-MINDLIN PLATE THEORY

INTRODUCTION

The acoustical characteristics of infinitely extended metal plates, loaded on one or
both sides by a fluid, have been investigated for a number of years to gain insight into the
acoustical behavior of more complicated submerged structures. Although the problems of
reflection from homogeneous submerged plates [1 or of the vibration of such plates
[2,3] have been solved formally by means of the theory of linear elasticity, it has also
proven useful to attack these problems using approximate structural-vibration theories.
The approximate theories are useful for several reasons.

First, the results of analyses made using the approximate structural-vibration theories
are often much more easily interpreted physically than are those results obtained using
exact linear elasticity theory. In fact, when adopting the rigorous elasticity-theory approach,
it is often necessary [4] to greatly restrict the scope of one's analytical treatment of a
problem that admits a very general formal solution just to cope with the great mathemat-
ical complexity of the solution that is finally obtained.

Second, there is little hope of rigorously solving many of the important problems
involving sound radiation and reflection by submerged structures by a direct application
of linear elasticity theory. Since it will be necessary instead to attack these problems using
approximate analysis, it is well to examine for relatively simple structures such as plates
the applicability of such approximate structural-vibrafion theories as will be required in the
analysis of complicated structures.

Third, because the approximate structural-vibration theories produce simpler analytical
results in general than does linear elasticity theory, the role of the characteristics of struc-
tural materials in determining the acoustical behavior of submerged structures can more
readily be determined by means of the approximate theories. Since an important objective
in structural acoustics is to learn how to modify the acoustic field radiated or reflected by
a submerged structure by modifying the characteristics of those materials from which it is
fabricated, it is advantageous to employ approximate theories when studying the influence
of a particular property of a component material in a structure on the overall acoustical
behavior of that structure.

The Timoshenko-Mindlin thick-plate theory is an appropriate structural theory to use
[5] in analyzing the acoustic reflection and radiation characteristics of submerged homo-
geneous plates. (The Timoshenko-Mindlin theory has also been used in evaluating the acoustic
transmission through submerged steel plates. See Refs. 6, 7, and 8.) This theory corrects the de-
fects of the classical- or thin-plate theory by accounting for the effects of rotatory inertia and
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transverse-shear deformation in the motion of the cross-sectional elements of a plate. It has
been shown for non-fluid-loaded plates that the results calculated with the Timoshenko-
Mindlin theory are indistinguishable from those obtained using linear elasticity theory in the
case of the lowest order antisymmetric Lamb mode of a thick plate [9]. (In Ref. 9, Mindlin
does not explicitly state that the flexural waves considered in his structural theory are
identical to the lowest order antisymmetric Lamb waves. However, it is a straightforward
algebraic manipulation to show that the characteristic equation resulting from exact elastic-
ity theory, which Mindlin uses when comparing the exact and the structural plate theories,
is the same as the characteristic equation for antisymmetric Lamb waves. An expression for
this latter characteristic equation is, for example, Eq. (6-11) of Ref. 3.) According to Junger
and Feit [5] the classical plate theory should be abandoned in favor of the Timoshenko-
Mindlin thick-plate theory when the plate thickness h is such that

2fh/cs < 0.1, (1)

where f is the frequency of the structural waves excited in the plate and CS is the shear-wave
speed in the plate material. (Junger and Feit give this relation as their Eq. (7.6) and cite
Ref. 10 as the source, but the relation does not appear in Ref. 10.) One notes from Eq. (1)
that the elastic behavior of even relatively thin plates of structural materials having low
shear-wave speeds should be analyzed with the Timoshenko-Mindlin theory. For example, a
5-mm-thick plate of a typical rubber, having a nominal shear modulus of elasticity of 13
MN/M2 and a density of 1.2 Mg/M3 , will satisfy the assumptions of classical plate theory
only below a frequency of 1.04 kHz, because the shear-wave speed in the rubber is only
104 m/s.

In this report a bilaminar composite plate of the kind depicted in Fig. 1 will be
considered. (Other structural theories that incorporate shear and rotatory-inertia effects
have been used to treat the problem of radiation from a submerged bilaminar plate. The
results in the present report should be compared to those given in Refs. 11 and 12.) Such
a bilaminar plate consists of two thick plates joined at an interface, with a fluid loading one
side of the composite and with the other side completely free (vacuum). The two plates
in the composite will be referred to as the substrate and the coating. The Timoshenko-
Mindlin thick-plate equations will be used to describe the flexural waves excited in both
the substrate and the coating. Such flexural waves in the composite plate can be excited
in various ways, such as by an acoustic wave in the fluid impinging on the plate or by an
applied force driving the substrate. Because the substrate and the coating are joined at
an interface, the flexural waves excited in each of the two layers of the composite are
coupled.

Fig. 1 - A thick fluid-loaded bilaminar composite
plate of infinite extent with a free surface. The FLUID
substrate and the coating in the composite plate :
are themselves considered as thick plates. I

VACUUM
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Whether the composite plate is excited by an impinging sound wave or by an applied ,
force, the coupled flexural waves generated will radiate sound into the fluid. In the former e
situation, one is dealing with the problem of sound reflection by an elastic composite plate,
and in the latter situation, one is dealing with a problem of radiation by a fluid-loaded
elastic structure. The form of the analytic expression describing the acoustic field of a
plate obtained in the reflection problem is different from the form of the expression
obtained in the radiation problem. However, it will be shown that the elastic behavior of
a plate, whether it be a simple homogeneous plate or a composite plate, can be described
by a structural response function that is the same in both the reflection and the radiation
problems.

The analytic expression for the structural response function shows that the nature
of the bond between the coating and the substrate of the composite influences the
acoustical behavior of the bilaminar plate. The nature of the bond determines the boundary
conditions to be satisfied at the interface between the coating and the substrate. Thus the
nature of the coupling between the flexural waves in the two layers of the bilaminar plate is
determined in part by this bond. Two idealized types of such interfacial boundary condi-
tions are considered in this report: "welded" bonding and "perfectly slipping" bonding.
Jones and Thrower [13] have previously considered these two types of idealized bonds in
their analysis of the vibration of a composite plate with free surfaces and have also given an
interesting discussion of the effect of these interfacial boundary conditions on some of the
wave-propagation phenomena associated with such a composite plate.

The analysis to be presented here will be developed as follows. Before analyzing the
acoustical behavior of a composite plate, a simple uncoated elastic plate will be considered.
An expression will be derived that describes the reflection of a harmonic plane acoustic
wave from such a plate. This equation will be expressed in terms of the structural response
function 92(w, 0) of the plate, which is a function of the angular frequency W of the plane
wave that is incident upon the plate at the angle 0. Next the analysis of Feit [14], in the
problem of the radiation of sound by an elastic plate excited by a point force, will be
considered. It will be shown that the equation describing the farfield directional character-
istics of the radiating plate can be expressed in terms of the same structural response func-
tion E2(co, 0) that appears in the equation describing the acoustic reflection characteristics
of the plate. In this radiation problem, co is the angular frequency of the harmonic point
force exciting the plate and 0 is the angle of emission of the radiated sound. It will be shown
in both the reflection and the radiation problems that the structural response function
completely characterizes the plate material and the fluid that overlies it. That is, all of the
material properties that enter either problem (plate and fluid densities and elastic moduli),
appear only in the quantity 2.

The analysis of the simple plate shows that the structural response function provides
a unique characterization of the material properties of the plate and of the fluid in which it
is immersed. This analysis also shows that the structural response function of the plate
can be obtained by analyzing either an acoustic reflection or radiation problem. With these
facts established, the analysis next turns to the problem of the bilaminar composite plate.
It is first shown, in the problem of acoustic reflection by such a plate, that the set of
coupled differential equations characterizing the system comprising substrate, coating, and
fluid can be transformed into equations that are completely analogous to those obtained in
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the corresponding problem of the simple uncoated plate. It follows that the only difference
between the equation describing the reflected field of the bilaminar plate and the equation
describing the reflected field of the simple plate is in the expression that one uses for the
structural response function. Thus, without going through any further analysis, the radiated
field of the bilaminar plate can be written down directly, simply by substituting the ex-
pression obtained for the structural response function of the bilaminar plate in place of that
of the simple bare plate in the radiated-pressure equation previously obtained. That is, once
the structural response function for a bilaminar composite plate (or for a more complicated
plate) is found, the radiated or reflected pressure can be immediately obtained from the
equations expressing these latter quantities for the simple bare plate.

REFLECTION OF SOUND BY A THICK FLUID-LOADED PLATE

Consider the infinite elastic plate of thickness h, with fluid above it and vacuum
beneath it, that is depicted in Fig. 2. Suppose a harmonic plane acoustic pressure wave in
the fluid is incident on the plate at an angle 0. The incident wave of amplitude Pi can be
expressed.

Pi(w, 0) =Pi exp -jko(x sin 0 - z cos - (2)

z
INCIDENT REFLECTED

PLANE WAVE PLANE WAVE

A _____ ____ _____ ___\ FLUID
A_ T. PLATE

hi~~~~~~~~~- x

B VACUUM

Fig. 2 - Reflection of a plane acoustic wave from an in-
finitely extended thick elastic fluid-loaded plate with a free
surface. The coordinate origin is in the middle surface of
the plate.

The reflected pressure wave at an angle 0, equal to the angle of incidence, is then

Pr(w, 0) Pr exp[-jko(x sin 0 +z cos 0)] . (3)
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The factor exp(jwt), with t being the time, has been suppressed in both Eqs. (2) and (3)
and will also be suppressed henceforth in this report. In Eqs. (2) and (3), ko is the wave-
number of the acoustic wave in the fluid:

ko = W/c, (4)

with c being the sound speed in the fluid. The rectangular coordinate system depicted in
Fig. 2 has its z = 0 coordinate plane at the middle surface of the plate, a distance h/2
from either surface. The y axis of the coordinate system is taken to be in the plane of
incidence, so that the dependence of quantities on the coordinate y can be eliminated.
For convenience the upper and lower surfaces of the plate are labeled A and B respectively.
Also of use is a trace wavenumber V defined by

I = ko sin 0. (5)

The amplitude Pr of the reflected wave, as a function of the angle 0 and of the angular
frequency co of the incident wave, is the quantity to be calculated. This amplitude will
depend on the elastic properties of the reflecting plate.

Elastic motion of the plate is described by the Timoshenko-Mindlin equations. For
harmonic motion in the coordinate system specified, these equations can be written as

D ax2 +gh [ a( - (x)j h [ QA (X) + QB(x)] + -cW2 ph 3 V;(x) =0 (6a)

and

gh [ ax2 - ax ] + [QA(X) + QB(x)] + w2 pshw(x) = °. (6b)
gh[aX

2w a4'(x)
(These Timoshenko-Mindlin equations for a thick plate with general surface stresses can
easily be derived by using the same technique that is used in Ref. 5 to derive the
Timoshenko-Mindlin equations for a thick plate with normal surface stresses.) The two
dependent variables w and X' in Eqs. (6) are respectively the deflection of the plate in the z
direction and the angle describing the effective rotation of the cross-sectional elements of
the plate. The quantities QZA and QB in Eq. (6b) are respectively the normal stresses applied
to surfaces A and B of the plate. These stresses are taken to be positive if they are tensile
and negative if they are compressive. Similarly Q! and QB in Eq. (6a) are respectively the
applied shear stresses at surfaces A and B. If Q, acts in the positive direction of x, it is
taken to be positive, and QB is taken to be positive if it acts in the direction opposite to the
positive direction of x. In the problem being considered, one has for all x

QB:(x) = QxB (x)= °, (az ~~~~~~~~~~~~(7a)

since the lower plate surface is stress-free, and

QxA (x) = 0, (7b)
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since the fluid exerts no shearing forces on the plate. At the upper surface A of the plate,
where z = h/2, one has for the normal stress

Q (x)= (Pi + Pdr I z = h/2 (8)

=(Po + P) exp(-jkx),

with

P0 = Pi exp~jko(h/2) cos 0] (9a)

and

P = Pr exp I-jko(h/2) cos 0] (9b)

and with W given by Eq. (5).

The other quantities in Eqs. (6) are constants associated with the plate. The flexural
rigidity D of the plate is

D= jEh3i/(1- v2), (10)

in which E and v are respectively the Young's modulus of elasticity and the Poisson's ratio
of the plate material. The density of the plate material is PS, and g is its effective shear
modulus. This latter elastic constant is related to the usual shear modulus of elasticity G
of the plate material by the equation

g= K2 G, (11)

in which K is Timoshenko's transverse-shear constant for the plate. Mindlin [9] has shown
that for a plate with free surfaces Timoshenko's constant is equal to the ratio of the speed
CR of Rayleigh waves on the surface of a semi-infinite solid consisting of the plate material
to the speed cs of shear waves in that material:

K = CR/CS, (12)

where

c. = VG / _pS . (13)

The Rayleigh-wave speed CR is obtained as a root of an appropriate dispersion relation [15] .

At the surface A of the plate the velocity must be continuous. Setting the time
derivative of the deflection equal to the acoustic particle velocity in the fluid gives

1 a
W(X) = a (Pi +Pr) I z h/2' (14)
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in which p is the density of the fluid. Carrying out the operations indicated in Eq. (14),
using the results given in Eqs. (2), (3), (5) and (9), gives

W(X) = jki co (Po - P) exp(-j7 x). (15)

Note from the exponential factor in Eq. (15) that the deflection w is expressed as a
propagating straight-crested wave. Two coupled differential equations, Eqs. (6), relate the
deflection w and the cross-sectional rotation A. Hence one also should be able to express A,
like w, as a propagating straight-crested wave. Therefore the solution for the cross-sectional-
rotation wave has the form

4(x) = C exp(-jikx), (16)

where C is an arbitrary constant.

The amplitude Pr of the reflected pressure wave may now be found. Suppose that

w(x) = W exp(-j-kx), (17)

where W is also an arbitrary constant. Then substitute this result and that expressed by
Eq. (8) into Eq. (6a). The equation thus obtained may be solved for the constant C in terms
of W:

jk'ghC= - jggh- W. (18)
'DV2 + gh- @2p

12

The results given by Eqs. (8), (16), (17), and (18), when they are substituted into Eq. (6b),
yield

pO +P= rw, (19)

where

= 2ps - k2gh+ DZ2 + gh 1 <,2p -h* (20)
12

From Eqs. (15) and (17)

2
°p-p o costW- ~(21)
0O- jk 0 cos 0 W

7
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Eliminating W between Eqs. (19) and (21) and recalling the results expressed by Eqs.
(9) gives an expression for the amplitude Pr of the reflected pressure in terms of the am-
plitude Pi of the incident pressure wave. This expression can be written in the form

Pr = Pa exp(ikoh cos 0) I 1+jQ(0,w)cos0 ] (22)

The quantity S2 in Eq. (22) is defined to be the structural response function of the fluid-
loaded thick plate. It is given by

92(0, [ 2 psh -' 2gh+ J2(gh)2 1-(23)
Q = 2 w - + Dk2+gh _ 1 -c2p h3

12 -
Note that all the information about the plate material and about the loading fluid (all elastic
constants, densities, etc.) that enters the reflection problem is incorporated into the
expression for the structural response function of the plate. This information does not
appear elsewhere in Eq. (22). The structural response function thus completely characterizes
the elastic behavior of the plate material in the problem of reflection of a plane wave by an
elastic plate.

The two leading factors on the right-hand side in Eq. (22) are not of great physical
significance. The first of these is just the amplitude of the incident wave, and the second
is a phase term that arises only because the coordinate origin was taken at the middle
surface of the plate. It is therefore useful to also define a normalized reflected pressure

2
Pref( 0 , 1 1 +j62(0, W) cos 0 (24)

RADIATION OF SOUND BY A THICK FLUID-LOADED PLATE

The analysis outlined here is essentially that given previously by Feit [14] . Here
different symbols are used for quantities representing the properties of the plate material,
but Feit's basic coordinate systems are retained. Also, to avoid confusion, Feit's convention
for the time dependence of a harmonic signal is used, namely, exp(-jwt). The notation in
the final expression, which will be obtained in this section of the present report for the
radiated field of the plate (Eq. (42)), can be made consistent with the result for the reflected
field which was obtained in the previous section (Eq. (22)) by taking the complex conjugate
of this final expression and then multiplying the result by a phase factor in order to shift the
coordinate origin to the middle surface of the plate.

Consider Fig. 3, which shows an infinite elastic plate of thickness h excited by a
harmonic point force applied at the origin of a spherical coordinate system. The polar
angle in this system is denoted by 0, the azimuthal angle is denoted by 0, and the radial
distance from the point of application of the force to the point at which the radiated
pressure is observed is denoted by R. An auxiliary cylindrical system, with its coordinates

8
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(r, z, q) as shown in Fig. 3, is also superimposed on the spherical system. The spherical and
cylindrical systems are connected by the relations

z = R cos 0,

r = R sin 0,

(25a)

(25b)

(25c)

z

SECTION OF
INFINITE

PLATE

OBSERVATION
' POINT

y

X'

POINT
FORCE

Fig. 3 - Radiation of sound from an infinitely extended thick elastic
plate that is excited by a harmonic point force. The plate has fluid
above it and vacuum below it. The coordinate origin, which is in the
upper surface of the plate (labeled surface A in Fig. 2), is common
to the rectangular, the spherical, and the cylindrical systems shown.

As in the reflection problem the plate is considered to have a fluid above it and a vacuum
below it. An expression for the radiated pressure field in the fluid at a very great distance
from the plate is sought. That is, one wishes to determine the radiated pressure p(R, 0, c)
when the point of observation is far enough from the plate so that this pressure can be
expressed in the form

1
p(R, 0, co) = P(0, W),-exp[-j(ot - ke0R)].

R 

9

(26)

0 = 0.



RUDGERS

One begins with the complete set of three coupled differential equations that,
according to the Timoshenko-Mindlin theory, describe the two-dimensional motion of
the plate. One then eliminates the two variables ox and by from these equations. These
two variables define the effective rotations of the cross-sectional elements of the plate with
respect to x and y rectangular axes, just as 4 defines the rotation of the cross-sectional
plate element in the one-dimensional situation described by Eqs. (6). The resultant differ-
ential equation describing the deflection of the plate is of the fourth order. In a plane polar
coordinate system in the upper surface of the plate, which is described using the coordinates
r and 0 shown in Fig. 3, this fourth-order equation for harmonic motion of the plate is

V12 + -)o'PS 12) +- /- p(fl' 3 3X w(r)

- V2 12gp2rrr w)1 (27)( gh 12g ) [ pr 0
where ial

2ll2(---)= [I + r ar] (28)tar2 rr
In Eq. (27) the quantity p(r, 0, w) is the pressure in the radiated field of the plate expressed
in cylindrical coordinates and evaluated at the z = 0 plane:

p(r, 0, w) = p(r, z, w) Iz=o = p(R, 7r/2, w). (29)

The factor 8(r)/27rr in Eq. (27) is the 8 function expressed in polar coordinates, and, as
before, w(r) is the deflection of the plate. The quantity F0 is the amplitude of the driving
force. Other quantities appearing in Eq. (27) have been defined previously. By symmetry
there is no dependence of Eq. (27) on the coordinate 0.

The acoustic field in the fluid satisfies the Helmholtz equation

('V2 + k2)p(r,z, w) = 0, (30)

with

V = V1 + az2, ~~~~~~(31)

where V2 is given by Eq. (28). As before, the velocity must be continuous at the surface
of the plate, so that

w(r) = 1 [ap(r, z, w) ] .(32)

10
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The cylindrical symmetry in the problem makes the use of the Hankel transform ap-
propriate. The Hankel-transform pair of zero order, which is used on the coordinate r, is
defined by

h(k, z) = f h(r, z)J0 (kr)r dr (33a)

and

h(r, z) = f h(k, z)J0 (k r)k dk, (33b)

where J0 is the zero-order Bessel function of the first kind and where the caret designates
a transformed quantity. When the Hankel transform of Eq. (27) is taken, the result is

f(k, o)t(k) = b(k, ) P - j(k, 0, w)]c (34)

where

f(k w ) =DO - C0 PS( g _ 12 k2- co2pslh I1- Ps)(35a)

and

b(k, c D) = 1 + co 2 h (35b)
gh 12g

The transformed form of Eq. (30), the Helmholtz equation, is

[ a + (k2 - k2 )J p(k, z, ) = 0. (36)

The solution of Eq. (36) is

p(k, z, w) = C(k, w) exp U(k 2 - k 2)'/2z], (37)

with Im[(kO - k2)'/2z] > 0, so thatp is bounded as z -+ o . In Eq. (37), the quantity C is
an arbitrary coefficient that is to be determined by satisfying the transformed form of the
boundary condition given by Eq. (32). From this transformed boundary condition and from
Eq. (37), one has

wv(k) = p 2 C(k, co)(kO - k2) 12. (38)

When the results given by Eqs. (37) and (38) are put into Eq. (34), one gets an equation that
can be solved for the coefficient C. The expression for this coefficient is

F0 F j 2 2/ f(e, w)1
C(k, ) = 1 + 2 (k2 - k _ (k, co) (39)

where f and b are given by Eqs. (35).

11
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The radiated field of plate, owing to excitation by the point force, is obtained by
taking the inverse Hankel transform of Eq. (37):

p(r,z, co) =f C(k, c)kJo(kr) expUi(k2 - k2 ) /2z] dk. (40)

Feit points out how the integral in Eq. (40) can be evaluated. One first transforms this
integral into a contour integral in the complex k plane. After reintroducing the original
spherical coordinates, using Eqs. (25a) and (25b), one changes the contour of integration
by means of the transformation

k = ko sin t. (41)

One then finds that the new contour integral in the complex t plane has the form of an
integral that has been previously evaluated by Brekhovshikh by means of an asymptotic
technique. The asymptotic evaluation of the integral in Eq. (40), which is valid in regions
of the fluid where koR is very large (in the farfield of the plate), yields an expression that
has the form of Eq. (26), with

P(0' co)= 2,, jk0 f(kCo ) , (42)

1+ 2 . CosO0
pC 2 b(k, c)

in which ? is the same quantity as given by Eq. (5).

Suppose that one sets

E2(O, co) = _ ko fb, A) (43)

It is then a straightforward algebraic manipulation to show that the quantity n defined
by Eq. (43) is identical to that expressed by Eq. (23). That is, the structural response
function for the radiating plate that is excited by a point force is identical to the structural
response function for a reflecting plate that is excited by an impinging plane sound wave.
It is not coincidental, but a consequence of the analysis, that the structural response func-
tion of the plate is the same in the reflection and radiation problems. In spherical
coordinates the Hankel-transformed equations in the radiation problem, which describe
the motion of the plate and the boundary condition at the plate/fluid interface, are formally
the same as the corresponding one-dimensional equations that arise in the reflection prob-
lem, when one considers the propagation of straight-crested waves in the plate. It can also
be shown that, when the result given by Eq. (42) is substituted into Eq. (26), the equation
obtained can be transformed into the form of the expression for the radiated field of the
plate that is given by Feit. Again one notes that in the radiation problem being considered
here the structural response function given by Eq. (43) completely characterizes the elastic
behavior of the plate material, just as it did in the reflection problem examined previously.

12
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A normalized form of the radiated pressure, showing the dependence of this quantity
on the structural response function of the plate, can be expressed rr,

Cos0

tad ( 1 + j2(0, cv) cos0 (44)

In obtaining Eq. (44) from Eq. (26) the complex conjugate of Eq. (42) has been introduced
in order to make the harmonic time-dependence factor used in Eq. (44) correspond to that
in Eq. (24). Also, if one wishes to change the coordinate origin in the radiation problem
from the upper surface of the plate to the middle surface, so as to make the coordinate
system used in the radiation problem correspond to the coordinates used in the reflection
problem, one should replace the radial distance R in Eq. (26) by the quantity on the right-
hand side of the equation:

h
R = R' --cos 0. (45)

2

In Eq. (45) the quantity R' is the radial distance to the observation point from the new
coordinate origin at the middle surface of the plate. Equation (45), which follows from the
cosine theorem for plane triangles, is valid only at distances from the plate such that
R >> h. Equation (44), the expression for the normalized radiated pressure, and Eq. (24),
the expression for the normalized reflected pressure, should be compared before proceeding.
The similarity of the two expressions is to be noted. Also to be noted, as previously
mentioned, is that all the material properties of the plate and of the fluid above it are
contained entirely in the function 92(0, c) and that &2 is the same in both the reflection and
the radiation problems.

STRUCTURAL RESPONSE FUNCTION OF A COMPOSITE PLATE

Calculating the reflected and radiated fields of a bare fluid-loaded plate makes the
problem of finding these fields in the case of a bilaminar composite fluid-loaded plate
relatively simple. All that is necessary is to find the appropriate expression for the structural
response function of the composite plate. This can then be substituted in place of Q2 in Eq.
(24), if the reflected field of the composite plate is sought, or else substituted in similar
fashion into Eq. (44), if the radiated field of the composite plate is to be found. Moreover
the analysis needed to obtain the structural response function for a composite plate closely
parallels either the development that was used previously in the analysis of the reflection
from the simple bare plate or else that used in determining the farfield radiation from such
a plate. Since it does not matter whether a reflection or a radiation problem is analyzed
in order to calculate a structural response function, the reflection problem will be chosen
in the case of the composite plate, because the analysis is simpler in this problem than in
the radiation problem.

"Welded" Interfacial Bond

Consider Fig. 4, which is essentially the same as Fig. 1, but with two rectangular
Fcoordinate systems, an unprimed and a primed system, superimposed on it. The origin

13
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of the unprimed system is at the middle surface of the substrate, and the origin of the
primed system is at the middle surface of the coating. In the discussion to follow, unprimed
quantities will generally be used in connection with the substrate, and primed quantities
will be used in connection with the coating. For example, h and h' refer to the thicknesses
of the substrate and the coating respectively and ps and p' refer to the respective
densities. The upper and lower surfaces of the substrate are labeled A and B, and the
upper and lower surfaces of the coating are labeled A' and B', as shown in Fig. 4,
with A and B' coincident.

A -

B '=A

B

1,_ PLATE 2
't' (COATI NG)

I_ PLATE I

< (SUBSTRATE)

OBSERVATION
POINT

i

.'=Z- '/2(h +h')

FLUID

INTERFACE-

X

VACUUM

Fig. 4 - Geometry of a bilaminar composite plate. Two rectangular coordinate
systems are used. Each system has its origin in the middle surface of one of
the two thick plates composing the composite. In the text, unprimed quan-
tities in general refer to plate 1, the substrate, and primed quantities refer to
plate 2, the coating.

The motion of the substrate is described by Eqs. (6). The motion of the coating is
described by a similar pair of equations:

___ _ , awlD' - ++gh
ax2 \ ax

- of) - (QXA +QB')+- C2pS(h')30 =0

+ (QA + QX) + Cv2 ph'w' = 0.

14
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g'h' ( a2oa
kax2 ax 

(46a)

(46b)
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As before, the superscripts on the stress terms Q designate the surface on which the
stresses act, and the subscripts designate the direction of their action. A number of the
boundary conditions in the present problem are like those encountered in the case of the
bare plate. Thus one has

QA=QB = QB = of 47(47)

and

Q? (Pi +Pr) 1z(h12)+h' = -(P + P) exp(-jfx), (48)

with

PO = Piexp(jkoy) (49a)

and

P= P exp(-jkO7), (49b)

where

y=( +h')cos0. (50)

Since the normal displacements of the coating and substrate must be the same, one has

w(x) = w'(x) (51)

for all values of x. As before, the velocity of the plate must match the particle velocity in
the fluid at the upper surface of the plate. If one applies Eq. (14) at z = (h/2) + h', an
expression identical in form to Eq. (15) is obtained, but with P0 and P now given by Eqs.
(49). From this expression one obtains, as in the problem of the bare plate, an equation
with exactly the form of Eq. (21).

Next consider the boundary conditions at the interface A = B' between the substrate
and the coating. In the case of the welded interface being considered, a pair of contiguous
differential plate elements on opposite sides of the interface move in complete unison.
The forces exerted by such a differential element in the coating on the adjacent element
in the substrate must be equal and opposite to those exerted by the element in the
substrate on the element in the coating. Thus, since the normal and shearing stresses are
in equilibrium across the interface, one has for all x

QA (x -QB(x) _Q, (x)(5a

and

QA(x) = QQx'(x Qx(x (52b)

15



RUDGERS

The quantities Qz and Q, defined by Eqs. (52) are new designations for the interfacial
stresses. One additional boundary condition must also be satisfied; the tangential
displacements u(x) and u'(x) in the substrate and coating must be equal at an interface
with a welded bond. Since, in the coordinate systems used, one has

u(x) = z4(x) (53a)

and

u'(x) = z'/'(x), (53b)

the boundary condition

u'(x) Iz'=- h'/2 = u(x) jz=h/2 (54)

leads to

'(x)= -(x), (55)

where

= h/h'. (56)

Equations (51) and (55) allow the variables w' and ' to be eliminated from Eqs. (6) and
(46).

As in the case of the bare plate, one considers straight-crested harmonic waves propa-
gating along the composite plate. Thus one expresses 4 and w by Eqs. (16) and (17) respec-
tively and also takes

Qx(x) = qx exp(-jk-x) (57a)

and

Qz(x) = qz exp(-jTx). (57b)

When the results expressed by Eqs. (16), (17), (47), (48), (49), (51), (52), (55), and (57)
are all substituted into Eqs. (6) and (46), four coupled algebraic equations result:

-Djt2C_ gh(iVS + h)- q + C02pSh3C = O. (58a)h 12

3,D'7V2 C- g'h'(iVW- PC) + 2 qx - 12 ' (h')3gC= °5
2 12 - + cv2 psh' = 0, (58b)

gh(- 2 W + jkC) + qz+ v2 psh W = 0, (59a)
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and

g'h'(- i2 W- jp)SC)- q, - (Po + P) + cov2pSh'W = 0. (59b)

Suppose that Eq. (58a) is multiplied by h', that Eq. (58b) is multiplied by h, and that the
two equations thus obtained are added together to eliminate qx. If the resulting equation
is then solved for the coefficient C, the expression obtained is

jk (g + g')h
(D p2D')k2 + (g- (g')h- 12 (Up - pS)h h (60)

Next Eqs. (59a) and (59b) are added together to eliminate qz, and the resulting equation
is solved for P0 + P. The expression obtained is

P0 + P = [c 2 (pSh + pSh') - Z 2 (gh + g'h')] W + j1h(g - g')C. (61)

When the value of the coefficient C, given by Eq. (60), is substituted into Eq. (61), the
result can be put in exactly the form of Eq. (19). On dividing the two expressions,
which correspond to Eqs. (19) and (21) in the bare-plate case, and solving the resulting
equation for the reflected pressure, one gets

Pr = PiexP(i2iov)[1 1+xj(k a) cos 0l (62)

with ty given by Eq. (50). Equation (62) is, as expected, of the same form as Eq. (22) which
was obtained in the bare-plate reflection problem. Here, however, for the bilaminar plate
with a welded bond at the interface, the structural response function E2 is expressed

&2(0, W) = °2 2(pSh + pWh')-_2 (gh +g'h')
PQs

+ 2 [g2 _ (g,)21
1 /2h 1 (63)

(D - 2D')72 + (g- fg')h --c 2(qpS - p )h2hj
12 

Obviously Eq. (62), which gives the reflected field of the composite plate, may be
written in the normalized form of Eq. (24). Also, as stated previously, one simply substitutes
the result given by Eq. (63) into Eq. (44) to obtain the normalized radiated field of the
composite plate, owing to excitation by a point force.

"Perfectly Slipping" Interfacial Bond

The problem of a "perfectly slipping" interface is similar to the problem of the welded
interface, and Fig. 4 may again be used. The motions of the substrate and coating are
again described by Eqs. (6) and (46) respectively. Moreover the boundary conditions
specified by Eqs. (47) and (48) also hold in this situation.
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For a "perfectly slipping" condition at the interface A = B', normal motions of the
coating and substrate will be directly coupled together, but tangential motions will not.
That is, a pair of contiguous differential elements on opposite sides of the interface move
in complete unison in the direction perpendicular to the interface but move completely
independently in the direction parallel to it. This type of motion implies that the boundary
conditions given by Eqs. (51) and (52a) also hold in the present situation. Equation (52b),
however, must be replaced by

QA = QB = 0 (64)

since the coating and substrate exert no tangential forces on one another. Equation (55)
also no longer holds, since there is no direct interfacial coupling between the tangential
displacements in the two layers of the composite plate. Therefore, in addition to specifying
X by Eq. (16), one likewise sets

4'(x) = C' exp(-j?~x), (65)

with C' an arbitray constant.

When the results expressed by Eqs. (16), (17), (47), (48), (49), (51), (52), (57), (64),
and (65) are all substituted into Eqs. (6) and (46), four coupled algebraic equations again
result:

- D 2C- gh(j W + C) +-c 2 psh 3 C=0 (66a)
12

- D'k2 C' - g'h'(jk W + C') +- 2 p (h')3C' = 0, (66b)
12 

gh(-V 2W +j7qC) + q + c 2pShW = 0, (67a)

and

g'h'(-42 W +jVC') - qz - (po +p) + cv2psh'W = 0. (67b)

Equation (66a) and Eq. (66b) are solved respectively for C and C' in terms of W, giving

j~ghC=- D 2 +gh c2 3 W (68a)

and

C'=- j7g'h' W. (68b)
D'V2 + g'h' -- C2pS(h') 3

12
Next Eqs. (67a) and (67b) are added together to eliminate q,, and the resulting equation
is solved for the quantity Po + P as before. The result is

PO + P = [cv2 (psh + p h') - Z2(gh + g'h')] W + jghC + jkg'h'C'. (69)
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After substituting the expressions for C and C', given by Eqs. (68), into Eq. (69), one can
eliminate W and solve the resulting equation for the amplitude Pr of the reflected pressure
in terms of the amplitude Pi of the incident wave. This calculation, which is identical to that
performed in the case of the welded interface, yields again Eq. (62). In the present case of
the composite plate with a perfectly slipping interface, however, the structural response
function is

Ego, cv) = p0 [2 (PSh + psh') - V2(gh + g'h')

+ (gh) 2 + (n7g0h)2 )

D J'2 +gh - 2 psh3 D' 2 +gth' - ± CO2pS (h)3 
12 12

USING THE STRUCTURAL RESPONSE FUNCTION TO DESCRIBE THE
ACOUSTICAL BEHAVIOR OF PLATES

The structural response function of a bare plate is given by Eq. (23), that for a
composite plate with a welded interfacial bond is given by Eq. (63), and that for a compos-
ite plate with a perfectly slipping interfacial bond is given by Eq. (70). A number of results
pertaining to the acoustical behavior of plates can be obtained by examining these equations
and by using the general concept of structural response functions.

First, neither of the two structural response functions found for a composite plate can
be put in the exact form of the structural response function of the simple bare plate by
specifying a set of artificial or "effective" material constants for the composite. That is, it is
impossible to determine a set of effective constants h*, ps, g*, and D* such that if each of
these constants were taken to be some combination of the actual material constants h, PS, g,
and D and h', p', g', and D', then Eq. (63) or Eq. (70) would be reduced to the form of Eq.
(23). This impossibility can easily be seen by means of an example. By specifying the effec-
tive values g* and h * such that

g*h*=gh +g'h', (71)

the second term in brackets in Eq. (63) could be put in the same form as the second term in
brackets in Eq. (23). However, to make the second term in the denominator of the last
factor in Eq. (63) have the form of its counterpart in Eq. (23), one would be required to
take

g*h* = gh - g'h2 /h'. (72)

Moreover, to make the numerator of the last factor in both Eq. (63) and Eq. (23) have the
same form, it would be necessary to set

g*h* = [g2 - (g') 2 ] /2h. (73)
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Clearly one cannot find a pair of effective material constants g* and h * that satisfies Eqs.
(71), (72), and (73) simultaneously. Similar problems also occur when attempting to assign
effective values to other material constants. Thus thick-plate theory shows that there is no
analytic basis for treating a composite layered material as a homogeneous material with
artificial, "effective" material constants-a practice often encountered in thin-plate theory
and shell theory. One could possibly find such a set of effective material constants, however,
if he were willing to greatly restrict the frequency range and the range of angles of observa-
tion being considered. Alternatively, by allowing the values of the effective constants to
vary rather arbitrarily with both frequency co and angle 0, one conceivably could also find
such a set of effective constants. However, little physical significance could be attached to
the effective material constants found by either of these two procedures.

Second, the analytic forms of Eqs. (63) and (70) are significantly different. Thus, in
general, the nature of the bond between the coating and the substrate layers of a composite
plate must affect the acoustical behavior of the overall structure. The implications of this
fact need to be examined in practical applications where composite structures are employed
to control acoustic radiation and reflection. Generally, when adhesives are used in practical
situations to bond layers of a composite structure together, acoustical considerations play
no role at all when a designer selects the bonding materials.

Third, the acoustical behavior of the composite plate is independent of which of the two
layers is vacuum backed and which is fluid loaded. That is, for a substrate with thickness h
and a coating of another material with thickness h', the structural response function of the
composite plate when the coating is in contact with the fluid and the substrate is vacuum-
backed is the same as the structural response function when the substrate is in contact
with the fluid and the coating is vacuum backed. This result can be deduced by inter-
changing the primed and the unprimed quantities relating to the composite in either Eq.
(63) or Eq. (70). Because of this symmetry in the structural response function, neither the
reflected pressure, owing to excitation of the plate by an incident plane wave, nor the
radiated pressure, owing to excitation of the plate by a point force, is altered if the compos-
ite plate is reversed. This fact is a consequence of using the Timoshenko-Mindlin thick-plate
equations to describe the motion of the plate.

Fourth, the composite plate is always perfectly reflecting if there are no losses in either
the coating or the substrate. That is, if the materials in both the substrate and the coating
are perfectly elastic, then the magnitude of the reflected pressure is independent of the
particular constants that describe these materials and is independent of the thicknesses of
the coating and the substrate. This independence holds true at all frequencies and at all
angles of incidence of the impinging plane wave. To demonstrate this result, one has only to
calculate the modulus of the normalized reflected pressure ref, given by Eq. (24). From
this calculation one finds that the modulus of the complex Pref is

IPref(0, cv) I = 1, (74)

provided that &2(0, co) is a real quantity. Now 92(0, co) will be real if the effective shear
moduli g and g' and the flexural rigidities D and D' of the substrate and coating layers are
real quantities, since all other parameters in the expressions for the structural response
functions can have only real values. Recalling Eqs. (10) and (11), one sees that g and
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D will be real quantities if the several elastic constants G, E, and v, of the substrate material
are all real quantities, that is, if the substrate material is perfectly elastic. A similar argument
applies to the constants g' and D' of the coating. Also, since Eq. (74) results from the form
of Eq. (24), the simple bare plate, like the composite plate, is likewise a perfect reflector at
all frequencies and for all incidence angles, provided that it is perfectly elastic. The result
expressed by Eq. (74) is somewhat unexpected. According to the analysis presented, the
only effect that the properties of a perfectly elastic material have on the acoustic reflection
characteristics of a vacuum-backed plate made from that material is to alter the phase of
the reflected plane wave relative to that of the incident plane wave. It might be argued that
Eq. (74) is an obvious result, since one is dealing with a lossless system. In such a case, the
argument would run, all acoustic energy that strikes the plate must subsequently be re-
flected from it. This naive argument, however, should not be applied in the problem
analyzed for the following reason. An elastic plate, whether it be simple or composite, will
convert some of the incident acoustic energy into elastic energy and, by its vibration, will
store part of this elastic energy. The amount of the incident acoustic energy stored as elastic
energy will certainly depend not only on the frequency and angle of incident of the imping-
ing plane wave but also on the elastic parameters of the material. The surprising feature
about this conversion and storage of energy is that it occurs in just such a way that Eq. (24),
which leads to Eq. (74), holds true.

Finally, from the appropriate structural response function the coincidence frequency
Wc of a composite or of a simple bare plate may be readily derived by using the equation

E2(7r/2, cc) = . (75)

To illustrate the use of Eq. (75), suppose that it is applied in the case of the simple bare
plate. One then has from Eqs. (4), (5), (23), and (75)

(DC2 + c2gh --xcvc2psh3) (c2 ps-g)+c 2 g2h0=. (76)

When Eq. (76) is solved for cocv, the result obtained is

v2 = _c 4 p h
c C2 cPS) c2 PS3)D (1-- (1- )

This expression for the coincidence frequency of a Timoshenko-Mindlin plate is the same
as Feit [14] gave in his List of Symbols. Moreover, for a simple or a composite plate, a
coincidence angle 0 c will exist at a given frequency co if

12(0c0 c) = 0 (78)

has a real solution for 0 c. Illustrating the use of Eq. (78) by again considering only the
simple bare plate, one has from Eqs. (4), (5), (23), and (78)

(Dcv2 sin2 0c +c2 gh- -- 2psc2h3 ) (c2ph - g) + g2hc2 = 0. (79)
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If Eq. (79) is solved for sin2 0c the result is

.0=c 2psh3 F 2c1

sin Oc + (l c ) (80)

The coincidence angle Oc is obtained by taking the inverse sine of the square root of the right-
hand side of Eq. (80). This operation will yield a real value of 0 c; that is, a coincidence angle
will exist only if the right-hand side does not exceed unity. For a given set of plate param-
eters the right-hand side of Eq. (80) will be less than unity when the frequency co of the
harmonic excitation of the plate is equal to or greater than the coincidence frequency cvc
given by Eq. (77).

SUMMARY

A unified analytical treatment has been given of the problems of reflection and radia-
tion from a thick composite plate that is fluid-loaded on one side and has a vacuum on the
other. The radiation and reflection problems have been related by introducing the concept
of the structural response function of the plate. By use of this function it has been shown
that one can characterize the elastic behavior of a thick plate that may be either simple or
composite. It has been found that the structural response function of a plate contains all of
the information about the plate materials that enters either the reflection or the radiation
problem. Expressions for the structural response function for two types of composite
bilaminar plates have been derived. It has been shown that, because these functions are of an
analytic form different from the structural response function of a simple plate, one cannot
in general determine a set of average or "effective" material constants that make a thick
bilaminar plate equivalent to a homogeneous thick plate. Also for the two types of
bilaminar plates considered, it has been shown, that, because the structural response func-
tions are different, the nature of the bond joining the layers of a bilaminar plate must play
a role in determining the overall acoustical behavior of the bilaminar plate structure. More-
over it has also been demonstrated that the structural response function is a concept that is
quite useful when describing a number of the acoustical phenomena that occur in radiation
or reflection of sound by thick fluid-loaded plates.
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